

British Journal of Pharmacology (2009), 158, 1874–1883
© 2009 The Authors
Journal compilation © 2009 The British Pharmacological Society All rights reserved 0007-1188/09
www.brjpharmacol.org

RESEARCH PAPER

Multiple muscarinic pathways mediate the suppression of voltage-gated Ca²⁺ channels in mouse intestinal smooth muscle cells

Yasuyuki Tanahashi^{1,2}, Toshihiro Unno^{2,3}, Hayato Matsuyama³, Toshiaki Ishii², Masahisa Yamada⁴, Jürgen Wess⁵ and Seiichi Komori^{2,3}

¹JSPS, Tokyo, Japan, ²Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan, ³Laboratory of Pharmacology, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu, Japan, ⁴Yamada Research Unit, RIKEN Brain Science Institute, Saitama, Japan, and ⁵Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA

Background and purpose: Stimulation of muscarinic receptors in intestinal smooth muscle cells results in suppression of voltage-gated Ca^{2+} channel currents (I_{Ca}). However, little is known about which receptor subtype(s) mediate this effect. **Experimental approach:** The effect of carbachol on I_{Ca} was studied in single intestinal myocytes from M_2 or M_3 muscarinic receptor knockout (KO) and wild-type (WT) mice.

Key results: In M_2KO cells, carbachol (100 μM) induced a sustained I_{Ca} suppression as seen in WT cells. However, this suppression was significantly smaller than that seen in WT cells. Carbachol also suppressed I_{Ca} in M_3KO cells, but with a phasic time course. In M_2/M_3 -double KO cells, carbachol had no effect on I_{Ca} . The extent of the suppression in WT cells was greater than the sum of the I_{Ca} suppressions in I_2KO and I_3KO cells, indicating that it is not a simple mixture of I_2KO and I_3KO cells. In contrast, the I_3KO cells, but not in I_3KO cells. In contrast, the I_3KO cells inhibitor YM-254890 strongly inhibited only the I_3KO cells. Suppression of I_3KO cells was markedly reduced by either *Pertussis* toxin or YM-254890.

Conclusion and implications: In intestinal myocytes, M_2 receptors mediate a phasic I_{Ca} suppression via $G_{i/o}$ proteins, while M_3 receptors mediate a sustained I_{Ca} suppression via $G_{q/11}$ proteins. In addition, another pathway that requires both $M_2/G_{i/o}$ and $M_3/G_{q/11}$ systems may be operative in inducing a sustained I_{Ca} suppression.

British Journal of Pharmacology (2009) **158**, 1874–1883; doi:10.1111/j.1476-5381.2009.00475.x; published online 26 November 2009

Keywords: M₂ receptors; M₃ receptors; knockout mice; intestinal smooth muscle; calcium channel; *Pertussis* toxin; YM-254890 **Abbreviations:** I_{Ca}, voltage-gated Ca²⁺ channel currents; KO mice, knockout mice; PTX, *Pertussis* toxin; WT mice, wild-type mice

Introduction

In gastrointestinal smooth muscle, stimulation of muscarinic receptors by the parasympathetic neurotransmitter, acetylcholine (ACh) or other muscarinic agonists produces a rise in the intracellular concentration of Ca^{2+} ([Ca^{2+}]_i), followed by a contractile response (Unno *et al.*, 2003). The muscarinic mobilization of cytosolic Ca^{2+} is generally believed to arise mainly via intracellular Ca^{2+} released by the second messenger, inositol-1,4,5-trisphosphate (IP₃). Additionally, Ca^{2+} entry

into the cell through the L-type voltage-gated Ca^{2+} channels ($Ca_v 1.2$; nomenclature follows Alexander *et al.*, 2008) is achieved by depolarization due to activation of the muscarinic cationic channels (Inoue and Isenberg, 1990; Komori *et al.*, 1992; Yan *et al.*, 2003). Previous work suggests that muscarinic receptor stimulation also produces inhibition of currents through L-type Ca^{2+} channels (I_{Ca}) (Unno *et al.*, 1995). This inhibitory effect is supposed to represent a negative feedback mechanism to prevent cytosolic Ca^{2+} overload induced by the muscarinic Ca^{2+} mobilization.

In guinea pig ileal smooth muscle cells, carbachol (CCh) suppressed I_{Ca} in a biphasic manner where an initial rapid suppression lasting 10 s was followed by a more sustained suppression lasting until CCh removal (Unno *et al.*, 1995). The initial transient I_{Ca} suppression is known to involve

IP₃-induced Ca²⁺ release that occurs upon muscarinic stimulation (Unno et al., 1995). Evidence indicates that Ca²⁺ release directly inhibits the activity of L-type Ca2+ channels through a Ca2+-induced Ca2+ channel inactivation mechanism, which is dependent upon the binding of Ca²⁺ to the inactivation site of the Ca2+ channels (Ganitkevich et al., 1987). However, the mechanisms underlying the later sustained suppression remain to be elucidated. Unno et al. (1995), studying CChinduced I_{Ca} suppression in guinea pig ileal myocytes, reported that both the initial transient and the subsequent sustained I_{Ca} suppression were insensitive to *Pertussis* toxin (PTX), an agent known to inactivate G_{i/o} G proteins. Conversely, Pucovsky et al. (1998) (who investigated the effect of PTX under conditions involving constant [Ca²⁺]_i levels in the same type of smooth muscle cells) concluded that the CCh-induced sustained suppression of I_{Ca} involves G_{i/o} proteins. These contradictory results may have arisen from the different experimental conditions under which the CCh-induced I_{Ca} suppression was observed.

In the present study, we used M_2 and M_3 muscarinic receptor single knockout (KO) and M_2/M_3 receptor double KO mice as novel experimental tools. Specifically, we investigated the effect of CCh on I_{Ca} in longitudinal smooth muscle cells isolated from the small intestine. We also used YM-254890, a selective inhibitor of $G_{q/11}$ G proteins, as well as the $G_{I/0}$ inhibitor PTX. Our results suggest the existence of three distinct pathways linked to muscarinic receptor-mediated I_{Ca} suppression in these cells that are in addition to the M_3 -mediated transient I_{Ca} suppression involving the Ca^{2+} -induced Ca^{2+} channel inactivation mechanisms. We propose that an $M_2/G_{I/0}$ pathway mediates phasic I_{Ca} suppression, that an $M_3/G_{q/11}$ pathway leads to sustained suppression and that a third pathway mediates sustained suppression requiring both $M_2/G_{I/0}$ and $M_3/G_{q/11}$ systems for its operation.

Methods

Experimental animals

All animal care and experimental procedures described below complied with the guidelines approved by the local animal ethics committee of the Faculty of Applied Biological Science, Gifu University.

The generation of the M₂ and M₃ muscarinic receptor single KO and M₂/M₃-double KO mice has been described previously (Gomeza et al., 1999; Yamada et al., 2001; Struckmann et al., 2003). The genomic background of the mice used in the present study was 129J1 (50%) × CF1 (50%) for the M₂KO and their corresponding wild-type (WT) mice, 129SvEv (50%) × CF1 (50%) for the M₃KO and their corresponding WT mice, and 129J1 (25%) \times 129SvEv (25%) \times CF1 (50%) for the M₂/M₃double KO mice and their corresponding WT mice. Animals were housed in polycarbonate ventilated cages. The animal room was maintained at 22-25°C with a relative humidity of 40-60% and a daily light/dark cycle (07:00-19:00). Food (MF or CMF; Oriental Yeast Co., Itabashi Tokyo, Japan) and distilled water were supplied ad libitum. Cells obtained from the three WT strains showed similar functional properties. Data obtained with these cells were therefore pooled (Sakamoto et al., 2007).

Cell preparation

Mice of either sex, aged more than 2 months and weighing 20–50 g were killed by cervical dislocation. A gut segment of 15 cm in length was then removed from a region over the jejunum and ileum (except for the terminal 2.0 cm portion) and placed in physiological salt solution (PSS), consisting of 126 mM NaCl, 6 mM KCl, 2 mM CaCl₂, 1.2 mM MgCl₂, 14 mM glucose and 10.5 mM HEPES (pH was adjusted to 7.2 with NaOH). The gut segment was cut into 1.0–1.5 cm pieces, from each of which the longitudinal muscle layer was carefully peeled off from the underlying tissue. Single intestinal smooth muscle cells were isolated enzymatically from the longitudinal muscle layers, as described previously (Sakamoto et al., 2006). The cells were suspended in PSS containing 0.5 mM CaCl₂, placed on the cover-glass as a small aliquot and stored at 4°C for 2–8 h until use on the same day.

Whole-cell current recording

Cells on a cover-glass were attached to a 1.4 mL chamber on the stage of an inverted microscope (IMT-2, Olympus, Tokyo, Japan). Whole-cell membrane current recordings were made at room temperature (21–25°C) using standard patch-clamp techniques (Hamill *et al.*, 1981) with patch pipettes of 2–7 M Ω . Current signals were amplified by a current amplifier (EPC8, HEKA, Lambrecht, Germany), filtered at 1 kHz and captured at a sampling rate of 4 kHz using an analogue-digital converter (DIGIDATA 1320A, Axon Instruments, Inc., Union city, CA, USA) interfaced to a computer (IMC PC-433, Inter medical Co., Nagoya, Japan) running with the pCLAMP program (version 9, Axon Instruments). The signals were also stored on a digital tape using a PCM data recorder (RD-130T, TEAC, Tokyo, Japan) for later analysis and illustration.

 I_{Ca} recordings were made from cells bathed in PSS and intracellularly dialysed with a Cs⁺-rich pipette solution composed of 134 mM CsCl, 1.0 mM Na₂GTP, 1.2 mM MgCl₂, 1.0 mM MgATP, 14 mM glucose, 0.05 mM EGTA and 10.5 mM HEPES (pH adjusted to 7.2 with CsOH). After being held under whole-cell voltage clamp mode at -60 mV, cells were continuously perfused with PSS at a rate of 5 mL·min⁻¹ using a gravity perfusing device, unless otherwise stated, and 30 ms step pulses to 0 mV generated by the pCLAMP program were applied to the cell repeatedly every 10 s to elicit I_{Ca} . If necessary, 20 mM EGTA was included in the pipette solution (in this case CsCl was reduced to 80 mM). When guanosine 5'-(γ -thio) triphosphate tetralithium salt (GTP- γ -S) was added in the pipette solution, Na₂GTP was omitted from it.

When currents through Ca²⁺-activated BK channels (I_{BK}) were recorded, a K⁺-rich pipette solution of the following composition was used (mM): KCl, 134; Na₂GTP, 1.0; MgCl₂, 1.2; MgATP, 1.0; glucose, 14; EGTA, 0.05; HEPES, 10.5 (pH adjusted to 7.2). Cells were bathed in PSS and held at a holding potential of 0 mV.

PTX treatment

PTX was injected into mice at a dose of $100\,\mu g \cdot kg^{-1}$ body weight (i.p.) and, 70–74 h later the cells were prepared as described above. This protocol has been used previously for

effective blockade of M_2 muscarinic receptor-mediated contraction of mouse gut smooth muscle (Unno *et al.*, 2005; 2006).

Data analysis

The amplitude of I_{Ca} was measured as the difference between the peak current level and the current level obtained by the step pulse to 0 mV after I_{Ca} blockade by nicardipine (1 μ M). Current density of I_{Ca} was calculated using the measured membrane capacitance obtained by applying hyperpolarizing pulses (10 mV). The extent of I_{Ca} inhibition by CCh or other agents was expressed as percentage reduction compared with the control I_{Ca} immediately before drug application. If the I_{Ca} rundown observed for a period of 1 min before CCh application was more than 10%, the experimental data were not used for evaluation of CCh effects. The amplitude of cationic current and I_{BK} evoked by CCh was measured as the difference from the holding current before application of CCh.

The values in the text are given as means \pm SEM. Statistical significance between two groups was tested using a Student's unpaired or paired t-test. When more than three groups were compared, one-way analysis of variance (ANOVA) followed by a *post hoc* Bonferroni-type multiple comparison test was used. If the data of the multiple group had not equal variance and normality, Kruskal–Wallis (non-parametric ANOVA) followed by a *post hoc* Steel–Dwass-type multiple comparison test was used. Differences were considered significant when P < 0.05.

Materials

Drugs used were carbamylcholine chloride (CCh), GTP-γ-S, PTX, nicardipine hydrochloride (all from Sigma, St. Louis, MO, USA), atropine sulphate and caffeine (Wako, Osaka, Japan), and YM-254890 (kindly given from Astellas Pharm. Inc., Tokyo, Japan). YM-254890 was dissolved in dimethyl sulphoxide as a stock solution, stored at –20°C and diluted with the pipette solution to the desired final concentrations. Drug concentrations in the text and figures are expressed as final concentrations applied to the cells.

Drugs were applied extracellularly by perfusion of an external solution with drug-containing PSS. Calculations made from a perfusion rate of 5 mL·min⁻¹ and a bath volume of 1.4 mL, gave a time constant of 16.8 s for solution exchange. Thus, about 1 min after the start of perfusion, the entire external solution was replaced with drug-containing PSS. For the recording of I_{BK} , cells were not perfused with PSS, but drugs were rapidly applied by replacing of the external solution with drug-containing PSS within 10 s using a pair of syringes connected to the chamber, one for injection and the other one for suction. EGTA, GTP-γ-S or YM-254890 was applied intracellularly via diffusion from the patch pipette into the cell, as previously described (Komori *et al.*, 1992).

Results

Effects of CCh on I_{Ca} in WT mice

Mouse intestinal smooth muscle cells prepared from WT mice were held under voltage clamp at −60 mV using patch

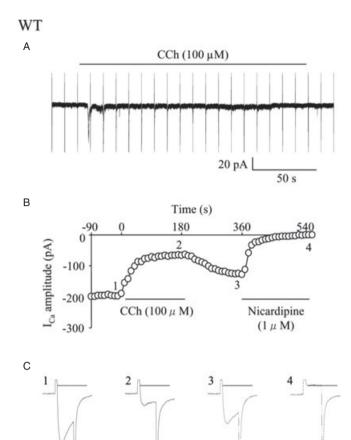


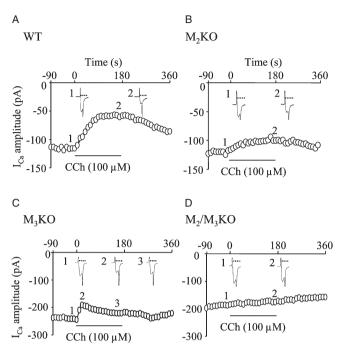
Figure 1 Effects of carbachol (CCh) on the holding current and the voltage-gated Ca²⁺ channel currents (I_{Ca}) in a single longitudinal smooth muscle cell isolated from the small intestine of a wild-type (WT) mouse. Ica was elicited by a 30 ms step pulse to 0 mV from the holding potential of –60 mV at a frequency of 0.1 Hz. CCh (100 μM) was applied extracellularly during application of the depolarizing pulses. (A) CCh induced a cationic inward current (I_{CCh}) consisting of an initial transient component followed by a sustained component. Every sharp current deflection shows overlapped I_{Ca} and the capacitive current. (B) Time course of the change in I_{Ca} amplitude (O) in the cell plotted against time (the beginning of CCh application was taken as zero). Points 1-4 in the graph correspond to actual Ica records (1-4) in (C). The amplitude of I_{Ca} was measured as the difference from the current level (interrupted line) obtained by the depolarizing pulse in the presence of nicardipine (1 μ M). In the following figures, measurements and plots of I_{Ca} amplitude were made in the same way.

pipettes filled with a Cs^{+} -based solution, followed by their continuous perfusion with PSS. Under these conditions, a 30 ms step pulse to 0 mV was repeatedly applied every 10 s in order to elicit I_{Ca} . The amplitude of I_{Ca} usually reached a steady level 3–4 min after the beginning of cell perfusion (see *Methods*).

In WT cells, application of CCh (100 μ M) produced an initial transient inward current followed by a smaller sustained current due to activation of cationic channels I_{CCh} (Sakamoto *et al.*, 2006). As shown in Figure 1B, I_{Ca} was reduced in amplitude after CCh (100 μ M) application. The I_{Ca} suppression developed progressively with time and reached a plateau about 2–3 min later. The mean suppression of I_{Ca} at

the end of a 3 min application of CCh (3 min point) was about 60% (Figure 3A and B). Removal of CCh from the perfusate allowed a partial recovery of I_{Ca} with a slow time course. Such sustained suppression of I_{Ca} was occasionally preceded by a transient suppression (n=5; data not shown). This effect has previously been observed in guinea pig ileal smooth muscle cells (Unno *et al.*, 1995). The initial transient suppression (47.5 \pm 8.5%, n=5) was seen when the step pulse to 0 mV happened to be applied on the point of the initial transient I_{CCh} reaching a peak.

The effects of CCh on I_{Ca} were concentration-dependent. When 1 or 10 μ M CCh was applied, the mean percentage suppression of I_{Ca} at the 3 min point was 18.3 \pm 6.2% (n = 3) or 25.2 \pm 6.6% (n = 4) respectively, which was significantly smaller than the inhibition observed after application of 100 μ M CCh (59.2 \pm 8.0%, n = 11). Because of the robust response observed with 100 μ M CCh, this CCh concentration was used for subsequent experiments.


The I_{Ca} suppression and I_{CCh} generation observed after CCh application were abolished by 1 μ M atropine (n=4, data not shown), indicating that both responses were exclusively mediated via muscarinic receptors.

Muscarinic receptor subtypes involved in the I_{Ca} suppression In order to identify the muscarinic receptor subtypes involved in the CCh-induced I_{Ca} suppression, we used cells isolated from M_2 KO or M_3 KO mice and M_2/M_3 -double KO mice and compared data from these mutant mice with data from WT mice. The mean current densities of I_{Ca} measured just before CCh application were not significantly different among WT and the three mutant strains or any pair of them (WT: $4.3 \pm 0.6 \text{ pA/pF}$, n = 16; M_2 KO: $3.6 \pm 0.7 \text{ pA/pF}$, n = 15; M_3 KO: $4.3 \pm 0.5 \text{ pA/pF}$, n = 15; M_2/M_3 KO: $3.9 \pm 1.8 \text{ pA/pF}$, n = 12).

In cells from M_2KO mice, CCh (100 μM) induced a suppression of I_{Ca} that persisted for the 3 min CCh application period, as seen in WT cells (Figure 2B). However, the mean I_{Ca} suppression at the 3 min point was significantly smaller than the corresponding value in WT cells (Figure 3B). In four out of 11 cells tested, the sustained I_{Ca} suppression was preceded by an initial, rapid suppression, as seen occasionally in WT cells. However, irrespective of the occurrence of the initial transient suppression, the percentage suppression of I_{Ca} in the sustained phase was again smaller than that in WT cells.

In M_3KO cells, CCh (100 μ M) caused suppression of I_{Ca} , but the I_{Ca} suppression was observed only during the initial period of the 3 min application of CCh, as illustrated in Figure 2C. As can be seen from an average curve for percentage suppression of I_{Ca} (Figure 3A), the peak suppression of I_{Ca} was achieved 30 s after the beginning of CCh application (30 s point) and then the I_{Ca} amplitude gradually increased to recover from its suppression despite the continued presence of CCh. The mean values of I_{Ca} suppression at the 30 s and 3 min points are shown in Figure 3B. These two values were significantly different (P < 0.05, paired t-test) and the latter value was similar to the time-dependent rundown. Therefore, the CChinduced I_{Ca} suppression in M_3KO cells was considered to be phasic, but not sustained in nature.

In cells from M_2/M_3 -double KO mice, CCh (100 μM) had no effect on I_{Ca} (Figure 2D; mean values in Figure 3A and B).

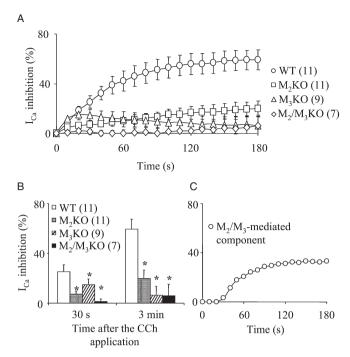
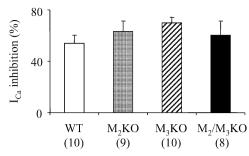


Figure 2 Effects of carbachol (CCh) on the voltage-gated Ca^{2+} channel currents (I_{Ca}) in cells isolated from muscarinic receptor knockout (KO) mice. (A–D) Time courses of the change in I_{Ca} amplitude in cells from wild-type (WT) (A), M_2KO (B), M_3KO (C) and M_2/M_3 -double KO mice (D). Points 1–3 in each graph correspond to actual I_{Ca} records in insets 1–3.

Again, the I_{Ca} reduction was within the time-dependent rundown. These data indicated that no other muscarinic receptor subtypes, beside M_2 and M_3 , participated in the CCh-induced I_{Ca} suppression.

Figure 3A and B shows summarized results of the CChinduced I_{Ca} suppression in the individual mouse strains. The sum of the mean suppression at the 30 s point in M₂KO (7%) and M₃KO cells (15%) was 22%, a value comparable with the WT value at this time (25%). Therefore, the CChinduced I_{Ca} suppression in WT cells at the 30 s point can be explained by a combined effect elicited by M₂ and M₃ receptors. Conversely, the sum of the mean suppression (26%) observed with M2KO (20%) and M3KO cells (6%) at the 3 min point was significantly smaller than the corresponding WT value (Figure 3B). If both the M2- and M3-mediated I_{Ca} suppression were subtracted from the WT curve (see Figure 3A), a large component of sustained I_{Ca} suppression still existed, as shown in Figure 3C. This component appeared about 30 s after CCh application, gradually developed, and reached a plateau level of about 33% inhibition within 2-3 min. Thus, the sustained I_{Ca} suppression evoked by CCh in WT cells is not a simple mixture of M2 and M3 receptor responses.

GTP- γ -S, a direct activator of GTP-binding proteins, has been shown to suppress I_{Ca} in guinea pig ileal myocytes (Beech, 1993; Unno *et al.*, 1995). We therefore also investigated the effects of GTP- γ -S on I_{Ca} in mouse intestinal smooth muscle cells. After intracellular application of GTP- γ -S (100 μ M), the I_{Ca} amplitude progressively decreased with a much faster time course than that seen in untreated cells and


Figure 3 Comparison of the inhibitory effect of carbachol (CCh) on the voltage-gated Ca²⁺ channel currents (I_{Ca}) in cells from wild-type (WT) and muscarinic receptor knockout (KO) mice. (A) Time courses of the change in the mean percentage suppression of I_{Ca} [the beginning of CCh (100 μM) application was taken as zero]. Each point indicates mean \pm SEM. (B) The mean percentage suppression of I_{Ca} measured 30 s (four left-hand columns) and 3 min (four right-hand columns) after CCh application. Each column shows the mean with one SEM. In (A and B), the numbers of cells used are presented in parentheses. Asterisks in (B) represent statistically significant differences from the corresponding value in WT cells (P < 0.05). (C) An assumed sustained component of I_{Ca} suppression mediated by M_2/M_3 pathway. Each point was estimated by subtracting the average percentage suppression curve of I_{Ca} in both M_2 KO and M_3 KO cells from that in WT cells shown in (A).

reached a plateau about 4–10 min after breaking the patch membrane in cells from all mouse strains. As shown in Figure 4, the mean percentage suppression of I_{Ca} measured 10 min after breaking the patch membrane was not significantly different among WT and all other mutant strains or any pair of them. Therefore, all cells used showed preserved coupling between G proteins and I_{Ca} suppression.

Type of G proteins involved in the muscarinic pathways mediating I_{Ca} suppression

In order to identify the type of G proteins involved in the muscarinic I_{Ca} suppression, we used PTX (which is known to ADP-ribosylate the α -subunit of $G_{\text{i/o}}$) (Katada and Ui, 1982) and YM-254890 (which has been recently developed as a specific inhibitor of $G_{\text{q/11}}$) (Takasaki *et al.*, 2004).

Treatment of mice with PTX has been shown to prevent CCh from producing M_2 -mediated contraction or cation channel currents in gut smooth muscle preparations (Unno *et al.*, 2005; 2006; Sakamoto *et al.*, 2006). So far, the ability of YM-254890 to inhibit $M_3/G_{q/11}$ -mediated responses has not been tested in mouse intestinal smooth muscle cells. Therefore, we first investigated the effect of YM-254890 on the

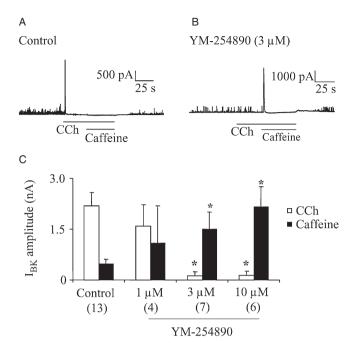


Figure 4 Effect of guanosine 5'-(γ-thio) triphosphate tetralithium salt (GTP-γ-S) on the voltage-gated Ca²⁺ channel currents (I_{Ca}) in cells from wild-type (WT) and muscarinic receptor knockout (KO) mice. GTP-γ-S (200 μM) was applied intracellularly via patch pipettes. The mean percentage suppression of I_{Ca} measured 10 min after the establishment of whole-cell clamp configuration are shown. Each column represents the mean with one SEM. The numbers of cells used are shown in parentheses.

M₃/G_{g/11}-mediated Ca²⁺ release event, which could be detected as I_{BK} responses (Sakamoto et al., 2007). Cells from M₂KO mice were dialysed with a K+-rich pipette solution including dimethyl sulphoxide (0.3%) as control, or YM-254890 (1-10 μM) for 10 min after the establishment of whole-cell configuration at the holding potential of 0 mV (see Material and Methods). As shown in Figure 5A, CCh (100 μM) consistently evoked a brief I_{BK} in control cells (mean values in Figure 5C). Subsequent application of caffeine (10 mM), a potent releaser of Ca²⁺ from internal stores, had no effect or induced a small I_{BK} (mean values in Figure 5C), indicating the previous depletion of Ca²⁺ stores by CCh. In M₂KO cells treated with YM-254890 $(1 \mu M)$, CCh induced no noticeable I_{BK} in one cell, but did induce a sizable I_{BK} of 2.1 \pm 0.5 nA in three other cells. The overall size of I_{BK} induced by CCh (Figure 5C) was not significantly different from the control value. At higher concentrations of YM-254890 (3 or $10 \mu M$), however, CCh evoked little or no IBK, but subsequent application of 10 mM caffeine induced a sizable I_{BK}, as shown in Figure 5B. The average sizes of IBK induced by CCh and caffeine in cells treated with 3 or 10 μM YM-2548790 are shown in Figure 5C and these values were significantly different from the corresponding control values (Figure 5C). Thus, YM-254890 at a concentration of 3 μM or higher was highly efficient in inhibiting the activity of G_{q/11} proteins in mouse intestinal smooth muscle cells.

Treatment with PTX ($100 \, \mu g \cdot k g^{-1}$) or YM-254890 (3 μM) produced no noticeable effect on I_{Ca} in cells from WT, $M_2 KO$ and $M_3 KO$ mice. For example, PTX-treated and -untreated WT cells had similar current densities of I_{Ca} of $4.7 \pm 1.0 \, pA/pF$ (n=12) and $4.3 \pm 0.6 \, pA/pF$ (n=16) respectively. Similarly, YM-254890-treated and -untreated WT cells had mean values of 3.4 ± 0.7 (n=20) and $3.5 \pm 0.9 \, pA/pF$ (n=12) respectively.

As shown in Figure 6A, PTX-treated M_2KO cells responded to 100 μM CCh with a sustained I_{Ca} suppression similar in the percent inhibition and time course to that seen in control cells. The mean suppression at the 3 min point was not different from the control values (Figure 6A and B). Conversely, YM-254890 (3 μM) treatment strongly attenuated the CChinduced sustained suppression of I_{Ca} , as shown in Figure 6C (mean values in Figure 6D). These results suggested the involvement of $G_{q/11}$ proteins in the M_3 -mediated sustained I_{Ca} suppression.

Figure 5 Effect of YM-254890 on BK current (I_{BK}) in cells isolated from M_2KO mice. CCh (100 μ M)- or caffeine (10 mM)-induced Ca^{2+} release events were detected as I_{BK} at the holding potential of 0 mV in M_2KO cells. Cells were dialysed with a K^+ -rich pipette solution containing 0.3% DMSO (control) or YM-254890 (1–10 μ M). (A and B) Typical current traces from a control cell (A) and YM-254890 (3 μ M)-dialysed cell (B). (C) Summary of CCh- and caffeine- induced I_{BK} in the presence or absence of YM-254890. The individual columns indicate the mean with one SEM. The numbers of cells used are shown in parentheses. Asterisks represent significant differences from the corresponding control values (P < 0.05). CCh, carbachol; DMSO, dimethyl sulphoxide; KO, knockout.

In contrast, PTX-treated M_3KO cells showed no suppression of I_{Ca} in response to CCh (Figure 7A; mean values in Figure 7B), but YM-254890 (3 μ M) treatment did not affect the CCh-induced I_{Ca} suppression (Figure 7C and D). These results suggest the involvement of $G_{i/o}$ proteins in the M_2 -mediated phasic I_{Ca} suppression.

In WT cells, PTX treatment strongly reduced the sustained I_{Ca} suppression (Figure 8A; mean values in Figure 8B). As shown in Figure 8A, the average I_{Ca} suppression curve against time after CCh application in PTX-treated WT cells closely resembled that in PTX-untreated M_2 KO cells.

In WT cells treated with YM-254890 (3 μ M), CCh induced a suppression that reached a peak inhibition at about 30 s (Figure 8C). The mean suppression values at the 30 s and 3 min points were significantly smaller than the corresponding control values (Figure 8D) but were the same as those in M₃KO cells (Figure 8C). The average I_{Ca} suppression curve in WT cells treated with YM-254890 (3 μ M) overlapped that in M₃KO cells (see Figure 8C).

Ca^{2+} dependency of the muscarinic I_{Ca} suppression

In guinea pig ileal smooth muscle cells, a certain level of intracellular Ca^{2+} is required for the CCh-induced sustained suppression of I_{Ca} (Unno *et al.*, 1995). In order to test the Ca^{2+} dependency of M_{2^-} or M_3 -mediated I_{Ca} suppression, cells were

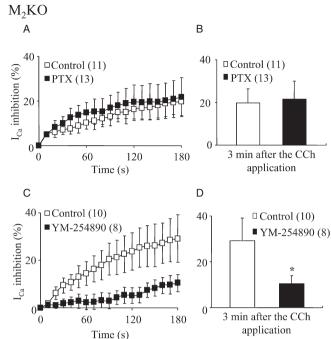
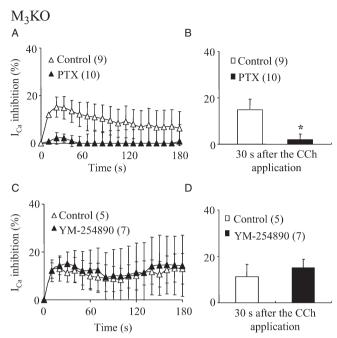



Figure 6 Effects of Pertussis toxin (PTX) and YM-254890 on the CCh-induced sustained I_{Ca} suppression in M_2 KO cells. (A) Time courses of the change in the mean percentage suppressions of I_{Ca} mediated by CCh (100 µM) in PTX-untreated (control) and -treated cells (the beginning of CCh application was taken as zero). (C) Time courses of the change in the mean percentage suppressions of Ica in 0.3% DMSO-dialysed (control) and YM-254890 (3 µM)-dialysed cells. Each point indicates mean \pm SEM. The numbers of used cells are shown in parentheses. (B and D) Summary of the mean percentage suppression of I_{Ca} measured 3 min after the CCh application in control, PTX-treated (B) or YM-254890-dialysed cells (D). Each column shows the mean with one SEM. The asterisk in (D) represents a significant difference from the corresponding control value (P < 0.05). PTX had no effect on the sustained I_{Ca} suppression, but YM-254890 markedly diminished it. CCh, carbachol; DMSO, dimethyl sulphoxide; I_{Ca}, voltage-gated Ca²⁺ channel currents; KO, knockout.

dialysed with a pipette solution containing EGTA (20 mM). Intracellular application of EGTA itself caused I_{Ca} to increase by approximately two to fourfold in the different mouse strains used. For example, the I_{Ca} current density in WT cells was increased from 4.3 \pm 1.1 pA/pF (n = 16) to 11.4 \pm 2.7 pA/pF (n = 20) by EGTA treatment.

The intracellular application of EGTA had little or no effect on the average I_{Ca} suppression curve in M_2 KO cells (Figure 9A and B) or in M_3 KO cells (Figure 9C and D). In contrast, EGTA treatment of WT cells caused a marked reduction of the CChinduced suppression of I_{Ca} . The I_{Ca} suppression in EGTA treated WT cells reached a peak within 1 min after the beginning of CCh application and then gradually recovered to some extent or maintained its decreased level during the presence of the agonist (Figure 9E). Thus the mean suppression at 30 s was not affected by EGTA but, at 3 min, EGTA significantly reduced the suppression of I_{Ca} . Interestingly, the averaged I_{Ca} suppression curve obtained in the EGTA-treated WT cells almost overlapped with a combined curve from the I_{Ca} -mediated suppression in I_{Ca} -Right and the I_{Ca} -mediated suppression in I_{Ca} -Right and the I_{Ca} -Right and $I_{$

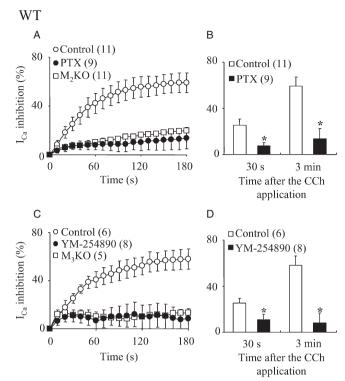


Figure 7 Effects of PTX and YM-254890 on the CCh-induced phasic I_{Ca} suppression in M_3 KO cells. (A and C) Time courses of the change in the mean percentage suppression of I_{Ca} induced by CCh (100 μM) in PTX-treated (A) and YM-254890 (3 μM)-dialysed (C) M_3 KO cells plotted in the same way as in Figure 6. (B and D) Summary of the mean percentage suppression of I_{Ca} measured 30 s after CCh application in PTX-treated (B) and YM-254890-dialysed (D) cells. Asterisk in (B) represents significant difference from the corresponding control value (P < 0.05). PTX abolished the phasic I_{Ca} suppression in M_3 KO cells, but YM-254890 had no effect on this response. CCh, carbachol; I_{Ca} , voltage-gated Ca²⁺ channel currents; KO, knockout; PTX, *Pertussis* toxin.

Discussion

The L-type voltage-gated Ca^{2+} channel represents one of the major pathways for Ca^{2+} influx into the cytosol and thereby plays an essential role in the regulation of $[Ca^{2+}]_i$ in smooth muscle cells. The channel activity is regulated by various neurotransmitters and hormones (see Imaizumi *et al.*, 1991; Pacaud and Bolton, 1991; Beech, 1993; Han *et al.*, 1995; Unno *et al.*, 1995; Wade *et al.*, 1996; Pucovsky *et al.*, 1998), although the precise signal transduction mechanisms involved remains unclear. In the present study, the inhibitory effects of the muscarinic agonist CCh on I_{Ca} were investigated in order to elucidate the muscarinic receptor subtypes and possible signal transduction mechanisms involved in intestinal smooth muscle cells from WT mice and mutant mice lacking M_2 or M_3 , or both subtypes of muscarinic receptors.

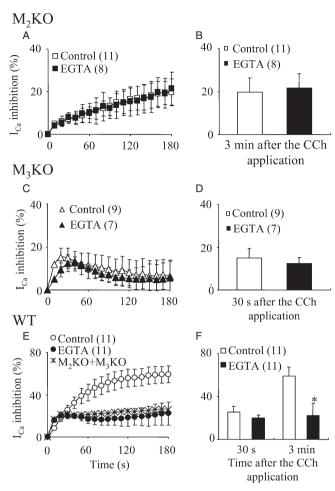

In WT cells, CCh (100 μ M) induced either a sustained suppression of I_{Ca} or a biphasic suppression consisting of an early transient component followed by a slowly developing sustained component, as previously described in guinea pig ileal smooth muscle cells (Unno *et al.*, 1995). No appreciable I_{Ca} suppression was observed upon CCh application in M₂/M₃-double KO cells, suggesting that only M₂ and M₃ receptors participate in the I_{Ca} suppression in WT cells. The early transient I_{Ca} suppression was detected during the initial transient component of cationic inward current, which reflects release

Figure 8 Effects of PTX and YM-254890 on the CCh-induced I_{Ca} suppression in WT cells. (A and C) Time courses of the change in the mean percentage suppression of I_{Ca} induced by CCh (100 μM) in PTX-treated (A) and YM-254890 (3 μM)-dialysed (C) WT cells. For comparison, the averaged I_{Ca} suppression curves against time after CCh application in PTX-untreated M_2 KO cells (Figure 6) and YM-254890-untreated M_3 KO cells (Figure 7) were superimposed in (A and C) respectively. (B and D) Summary of the mean percentage suppression of I_{Ca} measured 30 s (left-hand columns) and 3 min (right-hand columns) after CCh application in PTX-treated (B) and YM-254890-dialysed (D) WT cells. Asterisks represent significant differences from the corresponding control value (P < 0.05). CCh, carbachol; I_{Ca} , voltage-gated I_{Ca} channel currents; KO, knockout; PTX, *Pertussis* toxin; WT, wild-type.

of Ca²⁺ from intracellular stores (Komori *et al.*, 1993; Unno *et al.*, 1995). Such release of stored Ca²⁺ by CCh reflects M_3 subtype stimulation (Sakamoto *et al.*, 2007), and the transient I_{Ca} suppression is likely to be mediated via the $M_3/G_{q/11}/PLC_\beta/IP_3/Ca^{2+}$ release pathway and Ca²⁺-induced Ca²⁺ channel inactivation mechanisms (Figure 10).

In M2KO cells, CCh elicited a sustained, yet smaller, ICa suppression than that seen in WT cells. In M3KO cells, CCh induced a phasic I_{Ca} suppression, the time course of which was clearly different from that of the sustained suppression observed in WT cells. The I_{Ca} suppression in M₂KO and M₃KO cells are likely to be mediated through M₃ and M₂ receptors. The M₃-mediated sustained I_{Ca} suppression was inhibited by the G_{q/11} inhibitor YM-254890, but was unaffected by the G_{i/o} inhibitor PTX. In contrast, the M2-mediated phasic ICa suppression was abolished by PTX, but remained unaffected by YM-254890. Also, intracellular application of EGTA (20 mM) had no effect on either M₂- or M₃-mediated suppression. These results suggest that stimulation of both M2 and M3 receptors induce the phasic and sustained I_{Ca} suppression via $G_{\text{i/o}}$ and G_{q/11} type G proteins and that intracellular Ca²⁺ is unlikely to be involved (Figure 10).

Figure 9 Effects of EGTA on the CCh-induced I_{Ca} suppressions in M_2 KO, M_3 KO and WT cells. (A, C and E) Time courses of the change in the mean percentage suppression of I_{Ca} induced by CCh (100 μM) in 0.05 mM EGTA (control)- and 20 mM EGTA-dialysed cells from M_2 KO (A), M_3 KO (C) and WT (E) mice. In (E), the sum of the average I_{Ca} suppression curve in M_2 KO (A) and M_3 KO (C) control cells is also shown. (B, D and F) Summary of the mean percentage suppression of I_{Ca} measured 30 s or 3 min after CCh application in M_2 KO (B), M_3 KO (D) and WT (F) cells. The asterisk in (F) represents a significant difference (P < 0.05) from the corresponding control value. CCh, carbachol; I_{Ca} , voltage-gated I_{Ca} channel currents; KO, knockout; WT, wild-type.

In rat sympathetic neurons, substance P (SP) and somatostatin inhibited whole-cell N-type Ca²⁺ channel currents via PTX-insensitive and -sensitive G proteins (Shapiro and Hille, 1993). The SP-induced suppression developed slowly and then plateaued, while the somatostatin-induced suppression developed more rapidly, peaked and then gradually recovered even in the presence of the agonist. Furthermore, N-type Ca²⁺ channel suppression was resistant to BAPTA (20 mM). Thus, the characteristics of the SP- and somatostatin-induced suppression are similar to those of the M3-mediated sustained and M₂-mediated phasic suppression. In these studies Shapiro and Hille (1993) suggested that both the SP- and somatostatininduced suppression is not mediated by a diffusible cytosolic messenger, but by a membrane-delimited signal transduction pathway (Shapiro and Hille, 1993), possibly involving phosphatidylinositol 4,5-bisphosphate (PIP2) (Michailidis et al., 2007).

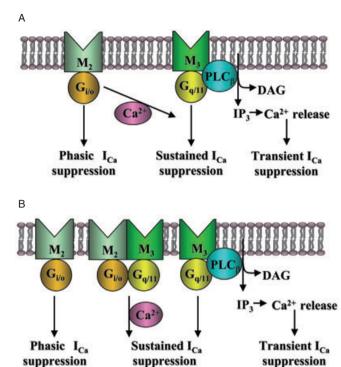


Figure 10 Assignment of muscarinic receptor subtypes and G proteins mediating the suppressions of L-type voltage-gated Ca²⁺ channels in intestinal smooth muscle cells. M₂ muscarinic receptors, via G_{i/o} proteins, induce a phasic I_{Ca} suppression, while M₃ receptors, via G_{q/11} proteins, induced a transient I_{Ca} suppression due to Ca²⁺ release from intracellular stores and a sustained I_{Ca} suppression. In addition, M_2 and M₃ receptors can cooperatively suppress I_{Ca}. The M₂/M₃-mediated pathway involves both $G_{i/o}$ and $G_{q/11}$ proteins and a Ca^{2+} -dependent process to induce a sustained Ica suppression. The present results are consistent with two possible models for the M₂/M₃-mediated pathway; one is a M₂/M₃-synergistic model in which the M₃/G_{q/11}mediated sustained suppression is potentiated by the M₂/G_{i/o}mediated, Ca2+-dependent signal (A), and the other one is a M₂/M₃-complex model in which both the M₂ and M₃ receptor subtypes and the respective G proteins form a complex to operate a Ca²⁺-dependent signal and induce a sustained I_{Ca} suppression (B), as suggested for the activation mechanisms of muscarinic cationic channels (Sakamoto et al., 2007). Ica, voltage-gated Ca2+ channel currents.

In rabbit colonic smooth muscle cells, Jin *et al.* (2002) demonstrated that M_2 receptor stimulation induced an enhancement of I_{Ca} , the effect was Ca^{2+} -independent and required G_i -dependent activation of the c-src kinase pathway. Moreover, in order to demonstrate M_2 -mediated enhancement of I_{Ca} , Jin *et al.* (2002) had to block M_3 -mediated signalling pathways by either treatment with 4-DAMP or by intracellular dialysis of an anti- $G\alpha_q$ antibody. Hence, we would have expected a similar result using M_3 KO cells. However, we failed to detect any enhancement of I_{Ca} by muscarinic receptor stimulation, but detected a phasic *suppression* in M_3 KO intestinal smooth muscle cells. This finding might be explained by the M_2 -mediated phasic I_{Ca} suppression representing the sum of both an inhibitory and a facilitatory pathway operating in parallel.

In WT cells, some I_{Ca} suppression still occurred independent of the combined effect of M_2 and M_3 receptor responses (as demonstrated by data from $M_2 \text{KO}$ and $M_3 \text{KO}$ cells Figure 3C). While EGTA had no significant effect on the I_{Ca} suppression in

 M_2KO or M_3KO cells, the Ca^{2+} chelator strongly inhibited the residual I_{Ca} suppression in WT cells (Figure 9E). These results suggest that the component of I_{Ca} suppression inhibited by EGTA in WT cells corresponds to a component that requires the simultaneous stimulation of both M_2 and M_3 receptors and that this M_2/M_3 -mediated pathway may contribute to I_{Ca} suppression in WT cells.

The I_{Ca} suppression in WT cells was inhibited by either PTX or YM-254890. The CCh-induced I_{Ca} suppression curve in PTX-treated WT cells resembled that of M_3 receptor stimulation (Figure 8A). Similarly, the average I_{Ca} suppression curve in YM-254890-treated WT cells was similar to that of M_2 receptor stimulation (Figure 8C). These results suggest that PTX and YM-254890 not only inhibit the M_2 -mediated and M_3 -mediated suppression, but also the M_2/M_3 -mediated sustained suppression. Taken together, these observations suggest that the M_2/M_3 -mediated sustained suppression involves both $G_{i/o}$ and $G_{q/11}$ type G proteins and a Ca^{2+} -dependent process.

In our previous work using guinea pig ileal myocytes, we did not detect a PTX-sensitive component of the CChinduced I_{Ca} suppression (Unno et al., 1995). We reported that I_{Ca} suppression is Ca²⁺-dependent and potentiated by an influx of Ca2+ through L-type Ca2+ channels (Unno et al., 1995). However, in this previous study, we used Ba²⁺ as a charge carrier for the current recording, so that [Ca²⁺]_i was kept at a low level, which probably resulted in a reduced activity of the M₂/M₃-mediated pathway. As a result, only the PTX-insensitive, M₃-mediated sustained component of I_{Ca} suppression was detected. However, Pucovsky et al. (1998) did detect a PTX-sensitive component of CCh-induced Ica suppression in guinea pig ileal myocytes, and they used a pipette solution in which the Ca²⁺ concentration was kept constant at 100 nM. This concentration of Ca²⁺ may be sufficient to allow the operation of the M₂/M₃-mediated pathway.

Wade et al. (1996) reported that ACh decreased the open probability of L-type Ca²⁺ channels in guinea pig gastric myocytes under the cell-attached patch clamp mode. They postulated the involvement of a diffusible cytosolic messenger in the ACh-induced I_{Ca} suppression. A similar result was obtained on muscarinic suppression of N- and L-type Ca²⁺ channels in rat sympathetic neurons (Mathie et al., 1992). This report also demonstrated that oxotremorine-M induced a sustained I_{Ca} suppression that was dependent upon intracellular Ca²⁺. Hence, our findings suggest that the M₂/M₃-mediated I_{Ca} suppression involves a diffusible cytosolic messenger in the signal transduction pathway. Unno et al. (1999) suggested the involvement of polymerization of tubulin, a constituent of the microtubule cytoskeleton, in the sustained muscarinic I_{Ca} suppression in guinea pig ileal smooth muscle cells. As polymerization of tubulin is dynamically regulated by cytosolic Ca²⁺ (Dustin, 1984), this signalling molecule could also regulate the M_2/M_3 -mediated I_{Ca} suppression.

Figure 10 depicts possible models for the assignment of muscarinic receptor subtypes and G proteins mediating the I_{Ca} suppression. M_2 receptors, via $G_{\text{I/o}}$ proteins, induce a phasic I_{Ca} suppression, while M_3 receptors, via $G_{\text{q/11}}$ proteins, induce a transient and a sustained I_{Ca} suppression. The third pathway (M_2/M_3) induces a sustained suppression when both M_2 and M_3 receptors are stimulated.

The M₃-mediated transient suppression is due to a Ca²⁺induced inactivation mechanism brought about by IP₃induced Ca2+ release from intracellular stores. On the other hand, the M2-mediated phasic and M3-mediated sustained suppression probably occur through Ca2+-independent mechanisms. For the M₂/M₃-mediated pathway, one possible model is depicted in Figure 10A. In this model, M₃ receptors mediate the sustained suppression through a Ca²⁺independent process, and this pathway is potentiated by an M₂/G_{i/o}-mediated, Ca²⁺-dependent signal. Alternatively, the M₂/M₃-mediated pathway may arise from a receptor complex consisting of both M2 and M3 receptors possibly via the formation of M₂/M₃ heterodimers (Maggio et al., 1999). Therefore, the M₂ and M₃ receptor subtypes may form a complex to activate two types of G proteins, $G_{i/o}$ and $G_{q/11}$, and the downstream signals may act to operate the sustained suppression through a Ca²⁺ dependent process, as shown in Figure 10B. This M₂/M₃ complex model is identical to that postulated for the activation mechanisms of muscarinic cationic channels in M₂ or M₃ KO mice (Sakamoto et al., 2007).

Muscarinic receptor stimulation activates cation channels to produce membrane depolarization and thereby increases discharge rate of action potentials, which are accompanied by Ca²⁺ entry (Inoue and Isenberg, 1990; Komori et al., 1992; Unno et al., 2003). As action potential discharge is accelerated, operation of a process to suppress I_{Ca} is accelerated by the increased Ca²⁺ influx. Since the M₂/M₃-mediated pathway depends on cytosolic Ca2, this pathway may detect the accumulation of [Ca²⁺]_i and then function to suppress the activity of L-type Ca2+ channels as a negative feedback system. The M₂/M₃-mediated pathway may involve a diffusible messenger and is sustained, allowing for prolonged inhibitory control of L-type Ca2+ channel activity. Using ileal smooth muscles isolated from muscarinic receptor KO mice, Griffin et al. (2004) reported that the heterologous desensitization induced by ACh is contingent upon activation of both M2 and M3 receptors and that activation of either receptor is insufficient to cause desensitization. Therefore, it is likely that the M₂/M₃mediated suppression of L-type Ca²⁺ channel activity is responsible, at least partly, for the heterologous desensitization caused by muscarinic receptor stimulation.

Acknowledgements

This work was supported by the JSPS Research Fellows for Young Scientists (No. 203080) and a Grant-in-Aid for scientific research (No. 20580322) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflicts of interest

The authors state no conflict of interest.

References

Alexander SP, Mathie A, Peters JA (2008). Guide to Receptors and Channels (GRAC), 3rd edn. *Br J Pharmacol* 153 (Suppl 2): S1–S209.

- Beech DJ (1993). Inhibitory effects of histamine and bradykinin on calcium current in smooth muscle cells isolated from guinea-pig ileum. *J Physiol* **463**: 565–583.
- Dustin P (1984). General physiology of tubulins and microtubules. In: Dustin P (ed.). *Microtubules*. Springer-Verlag: New York, pp. 94–126.
- Ganitkevich V, Shuba MF, Smirnov SV (1987). Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell. *J Physiol* **392**: 431–449.
- Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, Brodkin J et al. (1999). Pronounced pharmacologic deficits in M₂ muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96: 1692–1697.
- Griffin MT, Matsui M, Shehnaz D, Ansari KZ, Taketo MM, Manabe T *et al.* (2004). Muscarinic agonist-mediated heterologous desensitization in isolated ileum requires activation of both muscarinic M2 and M₃ receptors. *J Pharmacol Exp Ther* **308**: 339–349.
- Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. *Pflügers Arch* 391: 85–100.
- Han X, Shimoni Y, Giles WR (1995). A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. *J Gen Physiol* 106: 45–65.
- Imaizumi Y, Takeda M, Muraki K, Watanabe M (1991). Mechanisms of NE-induced reduction of Ca current in single smooth muscle cells from guinea pig vas deferens. *Am J Physiol* **260**: C17–C25.
- Inoue R, Isenberg G (1990). Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. *J Physiol* **424**: 57–71.
- Jin X, Morsy N, Shoeb F, Zavzavadjian J, Akbarali HI (2002). Coupling of M2 muscarinic receptor to L-type Ca channel via c-src kinase in rabbit colonic circular smooth muscle. *Gastroenterology* 123: 827– 834
- Katada T, Ui M (1982). ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. *J Biol Chem* **257**: 7210–7216.
- Komori S, Kawai M, Takewaki T, Ohashi H (1992). GTP-binding protein involvement in membrane currents evoked by carbachol and histamine in guinea-pig ileal muscle. *J Physiol* **45**0: 105–126.
- Komori S, Kawai M, Pacaud P, Ohashi H, Bolton TB (1993). Oscillations of receptor-operated cationic current and internal calcium in single guinea-pig ileal smooth muscle cells. *Pflügers Arch* 424: 431–438.
- Maggio R, Barbier P, Colelli A, Salvadori F, Demontis G, Corsini GU (1999). G protein-linked receptors: pharmacological evidence for the formation of heterodimers. J Pharmacol Exp Ther 291: 251–257.
- Mathie A, Bernheim L, Hille B (1992). Inhibition of N- and L-type calcium channels by muscarinic receptor activation in rat sympathetic neurons. *Neuron* 8: 907–914.
- Michailidis IE, Zhang Y, Yang J (2007). The lipid connection-regulation of voltage-gated Ca²⁺ channels by phosphoinositides. *Pflügers Arch* **455**: 147–155.

- Pacaud P, Bolton TB (1991). Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. *J Physiol* **441**: 477–499.
- Pucovsky V, Zholos AV, Bolton TB (1998). Muscarinic cation current and suppression of Ca²⁺ current in guinea pig ileal smooth muscle cells. *Eur J Pharmacol* **346**: 323–330.
- Sakamoto T, Unno T, Matsuyama H, Uchiyama M, Hattori M, Nishimura M et al. (2006). Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J Pharmacol Sci 100: 215–226.
- Sakamoto T, Unno T, Kitazawa T, Taneike T, Yamada M, Wess J *et al.* (2007). Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. *J Physiol* **582**: 41–61
- Shapiro MS, Hille B (1993). Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways. *Neuron* 10: 11–20.
- Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W *et al.* (2003). Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. *Mol Pharmacol* 64: 1444–1451.
- Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K *et al.* (2004). A novel Gαq/11-selective inhibitor. *J Biol Chem* **279**: 47438–47445
- Unno T, Komori S, Ohashi H (1995). Inhibitory effect of muscarinic receptor activation on Ca²⁺ channel current in smooth muscle cells of guinea-pig ileum. *J Physiol* **484**: 567–581.
- Unno T, Komori S, Ohashi H (1999). Microtubule cytoskeleton involvement in muscarinic suppression of voltage-gated calcium channel current in guinea-pig ileal smooth muscle. *Br J Pharmacol* 127: 1703–1711.
- Unno T, Kwon SC, Okamoto H, Irie Y, Kato Y, Matsuyama H *et al.* (2003). Receptor signaling mechanisms underlying muscarinic agonist-evoked contraction in guinea-pig ileal longitudinal smooth muscle. *Br J Pharmacol* **139**: 337–350.
- Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H *et al.* (2005). M2 and M₃ muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. *Br J Pharmacol* **146**: 98–108.
- Unno T, Matsuyama H, Izumi Y, Yamada M, Wess J, Komori S (2006). Roles of M2 and M_3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. *Br J Pharmacol* **149**: 1022–1030.
- Wade GR, Barbera J, Sims SM (1996). Cholinergic inhibition of Ca²⁺ current in guinea-pig gastric and tracheal smooth muscle cells. *J Physiol* **491**: 307–319.
- Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R *et al.* (2001). Mice lacking the M₃ muscarinic acetylcholine receptor are hypophagic and lean. *Nature* **410**: 207–212.
- Yan HD, Okamoto H, Unno T, Tsytsyura YD, Prestwich SA, Komori S *et al.* (2003). Effects of G-protein-specific antibodies and $G\beta\gamma$ subunits on the muscarinic receptor-operated cation current in guineapig ileal smooth muscle cells. *Br J Pharmacol* **139**: 605–615.